
Human-Powered Top-k Lists

Vassilis
Polychronopoulos

UC Santa Cruz
vassilis@soe.ucsc.edu

Luca de Alfaro
UC Santa Cruz

luca@soe.ucsc.edu

James Davis
UC Santa Cruz

davis@cs.ucsc.edu

Hector Garcia-Molina
Stanford University

hector@cs.stanford.edu

Neoklis Polyzotis
UC Santa Cruz

alkis@cs.ucsc.edu

ABSTRACT
We propose an algorithm that obtains the top-k list of items out of a
larger itemset, using human workers (e.g., through crowdsourcing)
to perform comparisons among items. An example application is
finding the best photographs in a large collection by asking humans
to evaluate different photos. Our algorithm has to address several
challenges: obtaining worker input has high latency; workers may
disagree on their judgments for the same items; some workers may
provide wrong input on purpose; and, there is a varying difficulty in
comparing different items. We provide experimental evidence for
the good performance of the algorithm, using extensive simulations
and actual experiments with workers from Amazon’s Mechanical
Turk.

Keywords
median rank aggregation,tournaments, crowdsourcing

1. INTRODUCTION
Crowdsourcing, i.e., harnessing human computation from a large

crowd of workers, has gained popularity as a method to tackle
simple tasks that machine computation cannot solve, e.g., attach-
ing keywords to an image or inferring sentiment from a piece of
natural-language text. In turn, recent studies have proposed algo-
rithms that combine crowdsourcing with automated computation
in order to solve more complex problems. For instance, the algo-
rithms in [6] can categorize an item within an ontology by asking
the crowd to compare the item against a few carefully-selected con-
cepts in the ontology.

In this paper, we introduce an algorithm to obtain the top-k items
out of a larger itemset by using the crowd to evaluate the “good-
ness” of items. An example instance of this problem is selecting
a handful of the most “appealing” photographs out of a larger set.
Another example is selecting the few most qualified candidates for
a specific job out of a pool of applicants. In both of these cases,
the quality of an item (a photograph or a job candidate) cannot be
computed by an automated method. Instead, our algorithm assigns
to the crowd the task of ranking a small number of such items. By
carefully selecting these ranking tasks and combining their results,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright is held by the author/owner. Sixteenth International Workshop
on the Web and Databases (WebDB 2013), June 23, 2013 - New York, NY,
USA.

the algorithm generates the k best items, as judged by the crowd.
An underlying assumption here is that the crowdsourcing service
provides access to workers who can perform such rankings. Hence,
we may use Amazon’s Mechanical Turk to rank photographs, but
we will rely on a specialized service of experts to rank job appli-
cants.

Our algorithm has to address several challenges that stem from
the usage of crowdsourcing. Recruiting human workers and ob-
taining their answers incurs a high latency and may involve a mon-
etary expense. In most crowdsourcing settings, there is a three-way
tradeoff among quality of results, latency and monetary cost; op-
timization of one quantity comes in the expense of the two oth-
ers. Some crowdsourcing applications are expected to return re-
sults at interactive speed. There are analytical methods for real-
time crowdsourcing [2] that optimize latency. The problem that
we consider may involve large itemsets and may require a large
number of comparison tasks, therefore, in many cases we cannot
realistically expect the results to be obtained in high speed. Our
technique focuses on optimizing monetary cost and makes several
calls to the service before obtaining the final results. It is thus not
suitable for real-time applications, however, it keeps latency rea-
sonably low by limiting the number of calls to the crowdsourcing
service. The algorithm cannot simply employ large ranking tasks,
as there is an inherent constraint on the size of a task. For instance,
a worker may be able to rank up to a maximum of ten photographs
at a time. Another challenge stems from the different judgements
made by human workers on the same ranking task, which in turn
introduces uncertainty in the ranking of items. The algorithm can
aggregate answers for the same ranking task from several workers
in order to reduce uncertainty, but this requires more calls to the
crowdsourcing service and hence increases latency and expense.
Uncertainty also depends on the difficulty of ranking tasks, e.g.,
ranking photographs may be more straightforward than comparing
applicant resumes. Moreover, workers may be more prone to errors
depending on the crowdsourcing service. For instance, it is well
known that Amazon Mechanical Turk has a considerable popula-
tion of (hard to detect) spammer workers who intentionally provide
false answers to tasks.

Previous studies have addressed specific variants of the top-k
problem. In [8], Venetis et al. explore algorithms for obtaining
the maximum (i.e., top-1) item assuming some a-priori knowledge
about the errors in the answers obtained from the crowdsourcing
service. In contrast, our algorithm solves the generalized top-k
problem without requiring this knowledge. A recent study [3] ex-
plored the more general top-k problem assuming that workers rank
two items at a time. Our algorithm does not have this restriction
and can issue ranking tasks of several items each. Depending on
the underlying domain, this strategy can reduce greatly the number

of calls to the crowdsourcing service without compromising the ac-
curacy of the final top-k items. Finally, several studies[5, 1] deal
with the problem of fully sorting a set of items using human work-
ers to perform comparisons. The proposed algorithms can be used
to solve the top-k problem by first obtaining the full sorted order
and then returning the first k items. However, this approach wastes
money and time to perform uninteresting comparisons beyond the
first k items. This waste can be significant if k is much smaller than
the total number of items, which is common in practice.

The main idea of our algorithm is to set up a tournament to grad-
ually reduce the input itemset down to the top-k items. Within each
round of the tournament, the algorithm compares items by issuing
several ranking tasks to the crowdsourcing service. The number of
workers assigned to each task is chosen adaptively, based on the
perceived complexity of computing a ranking. Detecting this com-
plexity in a robust and adaptive fashion is one of the key technical
challenges that we address in our work. More concretely, the main
contributions of our work can be summarized as follows:

• We define an algorithm to solve the top-k problem that em-
ploys human workers to compare several items at a time (Sec-
tion 3.1). The algorithm is parameterized by a component to
aggregate the answers of several workers on the same rank-
ing task, and a component to adaptively select the number of
workers for the ranking of a specific set of items.

• We introduce instantiations for the aforementioned compo-
nents (Sections 3.2 and 3.3) that work adaptively and do not
require a-priori knowledge about the errors committed by
human workers or the existence of spammer workers. The
resulting top-k algorithm can thus be deployed in different
problem domains with minimal tuning.

• We present an experimental study of the algorithm using both
simulations of human crowds and actual workers from Ama-
zon Mechanical Turk. The results demonstrate that the al-
gorithm computes accurate results even if ranking becomes
difficult or there are many spammer workers (up to 40% of
the worker population). Moreover, the algorithm matches the
performance of a specialized competitor for the top-1 prob-
lem, and offers significant savings compared to the state-of-
the-art method that sorts the entire itemset.

2. PROBLEM STATEMENT
Preliminaries. We consider a set of items O with cardinality n. A
ranking of the itemset is a permutation of the n items, where the
first elements of the permutation are the highest ranked items and
the last elements of the permutation are the lowest ranked items.
Let σ and τ denote two rankings. By σ(i) we denote the rank of
an item i in ranking σ, that is, its position in the ranking. For the
highest ranked element t in σ, σ(t) = 1 and likewise for τ . For
two items i and j if σ(i) < σ(j) we say that i is ahead of or better
than j in ranking σ. Given an integer k, an item i is a top-k item in
σ iff σ(i) ≤ k. A top-k list is the set of all top-k items. Note that,
by the definition, a top-k list is a set and not a ranking. That is, it
does not capture the rank of the items within the list.

We assume the existence of a crowdsourcing service that allows
a requester (in this case, our algorithm) to post tasks that can be
completed by human workers. We consider a specific type of task
defined as follows: Given a set of s items, ask a worker for a rank-
ing of the s items according to the worker’s perception. We term
this type of task a s-ranking task. Of course, the answers of differ-
ent workers may differ for the same task, either due to differences in
perception of item “goodness” or simply because workers may act

as spammers who return random answers just to collect the reward.
For this reason, we cannot assume any collective properties on the
answers from different workers, e.g., that the returned rankings will
define a total order. Note that the result of a task is the ranking of
the s items and not just the set of top-k items. As we discuss later,
this requirement is crucial in order to ensure the robust aggregation
of answers from different workers. We assume that each task is
issued in a crowdsourcing service as a single Human Intelligence
Task (HIT).

We associate two cost metrics with using a crowdsourcing ser-
vice, namely latency and expense. We measure latency as the num-
ber of roundtrips to the crowdsourcing service, where a roundtrip
involves the parallel issuing of several tasks and subsequently the
collection of answers from the workers. We assume that there are
enough workers to work the posted tasks in parallel, and hence it
is desirable to issue many tasks in each roundtrip. Each roundtrip
may be in the order of several hours, and so it is also desirable to
reduce the total number of roundtrips. The expense metric involves
the reward paid to workers for the completed tasks. We adopt the
common practice of paying the same amount for each task, and
hence we measure expense in terms of the total number of posted
tasks, across all roundtrips.
The top-k problem. We assume the existence of a ground-truth
ranking β that sorts the items in O according to some property of
interest, as judged by the workers of the specific crowdsourcing ser-
vice. For instance, β represents the ranking of photographs based
on their appeal or the ranking of job candidates based on their qual-
ifications. Ranking β is unattainable for practical purposes, as it
would require asking and aggregating the preference of all workers
for all items in O. It is not used by our algorithms; we only use it
to reason about correctness. In our evaluation section, we evaluate
accuracy of results by comparing against a known "gold standard"
ranking β.

Our goal is to compute k items that are close to the top-k items
in the ideal ranking β, by asking a limited number of the afore-
mentioned ranking tasks. Hence, the problem that we solve can be
defined informally as follows: Given an itemset O and a positive
integer Q, compute a subset Ω of O such that Ω contains k items,
the computation of Ω requires at most Q ranking tasks, and the
rank β(i) of each item i in Ω is close to the interval [1, k]. We
make the intuitive assumption that an algorithm can infer the rela-
tive position of items in β by issuing a sufficient number of rank-
ing tasks. Specifically, if several workers answer the same ranking
task and agree that i is before j in their answers, then most likely
β(i) < β(j). Deciding when there is enough agreement among
workers to infer this relationship is a key technical challenge that
we have to solve. We assume that k < s, that is, k is smaller than
the largest possible ranking task that can be executed by a human
worker.

It would be possible to produce a tighter problem definition (and
one that is more amenable to analysis) by making specific assump-
tions about the distribution of errors in the answers of human work-
ers. However, as noted in a previous study [9], this distribution de-
pends heavily on the similarity of items in the unknown ranking β
and is hence very difficult to obtain in practice.

3. TOP-K ALGORITHM
We now introduce our algorithm for the top-k problem defined

previously. The algorithm works in iterations, where in each iter-
ation it issues several s-ranking tasks, processes the answers pro-
vided by workers and then prunes away items that are not likely to
be among the top-k.

In what follows, we introduce the algorithm and then describe

Input : Itemset O, integer k, integer s
Output: k items in O
Data: candidate_set: an itemset, partition_set: a set of itemsets

1 candidate_set← O;
2 while |candidate_set| > k do
3 partitions← Partition(candidate_set, s) ;
4 Mark each itemset p in partitions as incomplete ;
5 candidate_set← ∅;
6 while partitions contain incomplete subsets do
7 foreach incomplete subset p in partitions do
8 Post s-ranking tasks for p // Section 3.3;
9 R← answers of the s-ranking tasks for p ;

10 r ← top-k items for p as aggregated from R //
Section 3.2;

11 if p is completed then
12 candidate_set← candidate_set ∪ r

13 return candidate_set;

Figure 1: Tournament algorithm for the top-k problem.

two of its key components: how to aggregate the answers of differ-
ent workers, and how to determine the number of workers assigned
to each task.

3.1 Algorithm Definition
Figure 1 shows the pseudocode of the algorithm. The algorithm

receives as input the itemset O, the target number k for the top
items, and the size s of the ranking tasks (s > k) , and outputs k
items from O that are deemed to be the top-k items in O based on
the results of ranking tasks.

The algorithm maintains a variable candidate_set that comprises
items from O that are candidates for the top-k output. Initially, this
candidate set is the entire itemset O. The algorithm then proceeds
in iterations, where in each iteration some items in candidate_set
are pruned based on the results of s-ranking tasks. Specifically,
each iteration initially partitions (in a random fashion) the items in
candidate_set in disjoint subsets of size s. Each subset corresponds
to a group of s-ranking tasks that will be posted to the crowdsourc-
ing service1. Initially, each subset p is marked as incomplete to
denote that the algorithm has not yet computed the top-k items in
p. Subsequently, the algorithm posts s-ranking tasks for each in-
complete subset p. The number of such tasks is determined based
on the difficulty of comparing items in p. We discuss one method
for this in Section 3.3. Note that the posting of s-ranking tasks for
the incomplete subsets occurs in parallel, i.e., the algorithm does
not wait for the answers for one subset before posting the tasks for
another.

Once all the tasks have been posted, the algorithm gathers an-
swers for each subset p and aggregates them to determine the top-k
items in p. We discuss one possible aggregation method in Sec-
tion 3.2. We use the aggregation results to measure consensus
among workers; we think of consensus as a predictor of correctness
and in the case of high consensus we consider the results correct
and mark p as completed. The top-k items of completed subsets
are inserted in the candidate set for the next iteration. The deter-
mination of completeness is closely coupled with the method to
determine the number of tasks for each subset p and we discuss
this further in Section 3.3.

The iteration continues until all subsets have been marked as
completed. At that point, the candidate set of the next iteration
comprises the top-k items from each subset p, and hence the size
of the candidate set has been reduced by a factor of s/k. When
1At most one subset may contain fewer than s items. If this subset
has fewer than k items, then no tasks need to be posted.

the number of candidate items is not greater than s, the algorithm
issues one final set of s-ranking tasks and aggregates the answers
to compute the top-k output. Overall, the algorithm will perform
logs/k(|O|) iterations, where each iteration may comprise several
roundtrips to the crowdsourcing service. A single roundtrip is de-
lineated by the issuing of s-ranking tasks and the processing of
their answers. Lines 7-12 in Figure 1 constitute a roundtrip and are
executed in parallel for each incomplete subset p.

One observation is that the algorithm computes the correct top-k
items if workers always return correct answers. However, due to
worker disagreements and errors, and the existence of spammers,
this guarantee is not feasible in the general case. Intuitively, the
algorithm is likely to return highly ranked items if we have robust
methods to aggregate the noisy answers for the same subset p and
to allocate more tasks to difficult subsets p. In what follows, we
describe our implementation of these two methods.

3.2 Aggregating Answers to s-Ranking Tasks
Given a subset of items p, the goal is to aggregate several an-

swers for the s-ranking tasks of p in order to determine the most
likely top-k items in p. To solve this problem, we borrow the me-
dian rank aggregation method which has been proposed for the
merging of ranked lists in the context of web-search results [4].
The method works as follows. Let τ1, . . . , τm be the rankings re-
turned by m workers. Recall that each τj contains a ranking of k
items from p. Let i be an item appearing in the rankings. Median-
rank aggregation assigns to i the median of its ranks in the different
rankings τ1, . . . , τm, and then generates an aggregate ranking τ by
sorting items according to their median ranks.

As shown in [4], the aggregated ranking τ has several desirable
properties. Intuitively, τ can be seen as an “averaged” ranking that
minimizes the average distance to the initial rankings τ1, . . . , τm.
We can thus treat τ as the consensus ranking that arises from the
answers of different workers, and the first k items in τ as the most
likely top-k items in p. We establish the following result for median
rank aggregations:

THEOREM 3.1. The lowest possible median rank of a top-k item
in the output of a median rank aggregation of m rankings over a
set of s items is:
L=d (q−1)s+(k−1)(m−q+1)+1

m
e, q = bm+1

2
c

We omit the proof due to space limitations. The significance of the
theorem is that, when using median rank aggregation, it is sufficient
to ask workers only for a ranking of the top-L items of each subset
instead of a ranking of all s items, which can require less effort by
the workers.

3.3 Determining the Number of Tasks
Basic approach A simple way is to allocate the same number of

workers to all s-ranking tasks and to vacuously consider the results
of all aggregations as complete. We call this strategy basic. This
way we minimize the number of roundtrips but the algorithm likely
overspends HITs on easy tasks and spends less than required on
hard tasks.

Adaptive approach We propose an adaptive approach that uses
a method to judge whether a subset is incomplete and determines
the number of tasks posted for each subset at every roundtrip. By
requesting a larger number of additional answers, the algorithm
may finalize faster the top-k items since consensus may be more
likely. However, this also means a higher expense. On the flip side,
by requesting fewer additional answers at each iteration, the algo-
rithm can spend resources more judiciously but it will also increase
latency since additional answers come at the cost of a roundtrip.

For the time being, suppose that we have a reliable method to de-
tect whether the result of median-rank aggregation (see previous
section) has high certainty and hence we can mark a subset p as
complete. Let ψ1, . . . , ψn be a sequence of positive integers such
that ψ1 < · · · < ψn, where n is a parameter of our scheme. We ini-
tially post ψ1 tasks per subset p, where ψ1 represents the minimum
count of human workers whose answers can hopefully provide a
consensus in median-rank aggregation. We found that ψ1 = 3 is a
reasonable default. If additional answers are required, then we post
an additional set of ψ2 − ψ1 tasks, which means that the algorithm
will have a total of ψ2 answers to evaluate the completeness of p.
We continue in the same fashion until we post a total of ψn tasks
which is the maximum. At that point, p is marked as complete by
default.

In practice, we found that it works well to have three levels
ψ1, ψ2, ψ3 (n = 3) corresponding to easy, medium and high diffi-
culty, with ψ1 = 3 and ψ2 = bψ3−ψ1 /2c. The number of subsets
at each iteration i is: pi = (|Ci| div s) + di, where Ci is the can-
didate set at iteration i and di is 1 if (|Ci| mod s) > k and 0 other-
wise. For i > 1 : |Ci| = (pi−1) ·k+(1−di−1) · (|Ci−1| mod s).
Starting with C1 = O, we can compute all pi’s until the last itera-
tion and obtain the total number of subsets. Since the total number
of posted tasks cannot exceed Q, we define ψ3 = b Q

Σipi
c.

The only remaining question is how to judge completeness for a
subset p. In other words, given the answers to the s-ranking tasks
for p and the k items resulting from median-rank aggregation, how
can we determine that they represent the top-k items with high cer-
tainty. Here we rely on the following intuition: If workers tend to
disagree on their answers, this likely implies existance of spammers
or difficult comparisons and allocating more workers to the task is
likely beneficial in terms of quality. On the other hand, aggreement
among workers can imply an easy task, and therefore accurate re-
sults, in which case we mark the s-ranking task as complete.

To measure agreement among the answers of workers, we re-
sort again to the mechanics of median-rank aggregation from Sec-
tion 3.2. We describe our technique with an example. Suppose
that p = {A,B,C,D,E}, k = 3, and the answers we obtain
from three workers are as follows: τ1 = (A,B,C,D,E), τ2 =
(A,C,B,D,E) and τ3 = (A,B,D,C,E). Median-rank aggre-
gation will assign the following median-rank r(i) to each item i:
r(A) = 1, r(B) = 2, r(C) = 3, r(D) = 4, r(E) = 5, and
hence the top-3 items are {A,B,C}. Note that the median ranks
of the top-3 items are the same as if the workers were in perfect
agreement, i.e., they all returned (A,B,C) as their answer. Indeed,
one can observe that there is high agreement in their answers, even
though items may be ordered differently. This is reflected in the
number of items that are assigned each median rank: there is ex-
actly one item (A) with median rank 1, exactly one item (B) with
median rank 2, and so on. In contrast, suppose that the returned an-
swers corresponded to disagreement, as follows: (A,D,C,B,E),
(C,A,B,D,E), (B,E,A,C,D). Here, the median ranks are as
follows: r(A) = 2, r(B) = 3, r(C) = 3, r(D) = 4, r(E) = 5.
The top-k items are again {A,B,C}, but among them no item is
given median rank equal to one, and two items have median rank
equal to three. Overall, the intuition is that we can measure worker
agreement by examining the ties in the assigned median ranks.

Formally, let r denote a vector of length L, where L is defined
as the lowest median-rank that can be assigned to the k items in
the output of median-rank aggregation (Theorem 3.1). The com-
ponent r[i] denotes the count of items (among the k output items
of median-rank aggregation) that are assigned median rank i. In
the case of perfect agreement among workers, we can show that
r[i] = 1 for 1 ≤ i ≤ k, and r[i] = 0 for k < i ≤ L (see also

our example). Conversely, disagreement results in r[i] = 0 for
some i ∈ [1, k], or r[j] > 1 for some j ∈ [1, L]. Using this idea,
we measure the uncertainty of median-rank aggregation by the dis-
tance between r and the reference vector that represents perfect
agreement. If this distance exceeds a threshold t then we infer that
workers disagree too much to infer the top-k items with high cer-
tainty, and hence we mark p as incomplete. We experimented with
several distance metrics and settled on cosine similarity because of
its robustness in our experiments. Threshold t can be quantized
to a few values, each one corresponding to a specific sensitivity to
disagreements.

Speculative and Redistributive optimizations We employed
the following optimization to reduce the number of roundtrips: at
the beginning of each iteration, the starting point for the number of
tasks (among ψ1, . . . , ψn) is determined as the ψj of the previous
iteration where most tasks where marked as complete. As an ex-
ample, if most subsets were marked as complete using ψ2 answers
(the medium difficulty in our three-level scheme ofψ1 < ψ2 < ψ3)
in the previous iteration, then the next iteration will start with ψ2

tasks per subset by default. The intuition is that comparisons can
only become more difficult as iterations proceed. We observed that
the use of an adaptive starting point reduced significantly the num-
ber of roundtrips to the crowdsourcing service. We call this opti-
mization speculative as it assumes that we will need more workers
without checking it. Finally, we tested an optimization that we call
redistributive: we recompute ψ3 and ψ2 at every iteration using the
remaining budget and considering the current candidate set as the
initial itemset. This allows the algorithm to increase ψ3 if initial
iterations do not exhaust their allocated budget.

4. EXPERIMENTAL STUDY

4.1 Simulations
Data We generated synthetic itemsets of varying size n=50, 100,

200, 300. Every item i inO is associated with a real value V (i) that
determines a ground-truth ranking β for the elements–a high value
implies a high rank and vice versa. We generated three itemsets
corresponding to different methods of assigning values to items:
the first itemset assigns values uniformly at random in the interval
[1, n]; the second itemset assigns integer values 1, 2, . . . , n; and,
the third dataset assigns values from a Gaussian distribution with
mean dn+1

2
e and deviation n

4
, meaning that on average more than

98% of items take values in the [1,n] range with the majority cen-
tered around the mean. Our results for the third value distribution
are better than for the other two and seem to favor our algorithm,
since it is easier to differentiate the top-k items. We therefore omit
this itemset from the presented results. The results for the uniform-
random and integer-valued itemsets were practically the same, thus,
we consider only the simplistic integer-valued itemset as it makes
it easier to interpret our experimental results.

Algorithms We implemented both the basic and adaptive ap-
proaches and compare them. Unless otherwise noted, the adaptive
method allocates any remaining HITs (up to the specified budget
Q) to the very last s-aggregation that also determines the top-k
items. We also consider the extension of the adaptive approach
with the speculative and redistributive heuristics.

Modeling of human workers A human worker may be either
an honest worker or a spammer, with a probability that we vary in
our experiments. A spammer returns any of the s! permutations of
the items. An honest worker behaves according to the model that
Louis Thurston described in 1924 [7], formalizing the fuzzy way
that humans perceive intensity of physical stimuli. Specifically, we
assume that the worker perceives the value of an item i by sampling

(a) Basic vs. adaptive approach (b) Tolerance to workers errors (c) Tolerance to spammers

(d) Comparison to human-powered sort (e) Comparison to max tournament (f) Mechanical Turk results

Figure 2: Results of experimental study

from a normal distribution that is centered around the actual value
V (i). Figure 3 gives an example of this process, assuming that
the worker is presented with three items to rank. The perceived
values determine the ranking returned by the worker. Clearly, the
probability of committing errors (with respect to the ground-truth
ranking) increases with the variance of the distribution.

Figure 3: Example of a swap in the baseline ranking

We treat the top-k items as a set, and so swaps that take place
within the top-k set are irrelevant and do not affect our metrics.
Hence, we model the error rate of honest workers as the probability
that there is a swap of two items of value distance equal to k. This
probability corresponds to a specific variance of the normal distri-
bution of the error model. As an example, an error rate of 30% for
k=5 corresponds to a probability of more than 49% in swapping
two neighboring items in a ranking task. We assume that all honest
workers make errors with the same rate, that is, we do not assume
the existence of workers with higher or lower expertise than others.

Parameters We fix the size of the ranking tasks at 10, the thresh-
old beyond which workers abandon tasks at a high rate, as ex-
plained in [5]. The following table shows the remaining parame-
ters of the experimental study, how we vary them and their default
values.

Parameters of experiments
Parameter Range Default
k 1,5 5
s (size of ranking task) - 10
Workers per ranking task 3-15 3
Spammer prob. 10%-60% 20%
Error rate 10%-40% 25%
Budget 198-10000 585
Threshold t - 0.85

Error metric Let e1, .., ek be the top-k items returned by the

algorithm. We define the error metric εr =
Σk

i=1V (βi)−Σk
i=1V (ei)

V (β1)−V (βk)

where β1, ..., βk are the top items in the ground-truth ranking. We
base our metric on values instead of ranks so as to take into account
the similarity among the returned top-k items and the actual top-k
items. Note that the metric acquires a natural interpretation for
the integer-valued itemset we use in the experiments, where items
with neighboring ranks in β have a value distance equal to one.
Hence, the factor V (β1) − V (βk) is equal to k and the formula
expresses the average value error per item in the top-k list. As an
example, when obtaining the top-1 list, εr=1 means that on average
our rankings will return the item with ground-truth rank equal to 2.

For every arrangement of the parameters we conducted 50 exper-
iments (using different seeds for our random number generation) so
that the average error value converges to its actual expected value.
The error we report in the plots is the average error εr over all 50
runs.

Basic vs. adaptive approach Figure 2(a) shows the perfor-
mance of the algorithm for three levels of available budget, namely
198, 351, 585 and 975 HITs, corresponding to 3, 9, 15 and 25 tasks
respectively per subset of s items for the basic algorithm. We ob-
serve that the adaptive variant reduces error significantly (between
1.5x and 2x) compared to the basic variant. The reason is the adap-
tive allocation of workers depending on the difficulty of ranking
tasks, which increases in the later iterations. We also see that the

speculative heuristic can reduce latency significantly, cutting down
the number of roundtrips by 44%. On the other hand, the redis-
tribution heuristic performs worse than expected and results in a
higher error. The reason is that the problem becomes dramatically
more difficult in the last iteration, and hence the algorithm can ben-
efit more from keeping the ψi levels lower in the initial iterations,
reserving an ample budget for the last iteration. Given these results,
from now on we focus on the adaptive variant augmented with the
speculative heuristic.

Tolerance to workers errors. Figure 2(b) shows the error met-
ric as a function of the error rate of honest workers. The two curves
correspond to no spammers and to the default probability of get-
ting a spammer worker. As expected, the output error increases as
the workers commit more errors. However, we observe that the al-
gorithm can achieve high accuracy even for high error rates. For
instance, for an error rate of 30%, which corresponds to a probabil-
ity of more than 49% of swap for neighboring items, the algorithm
returns the top-k list with average error less than 0.2, which cor-
responds to returning elements β1, . . . , bk−1, βk+1, i.e., missing
only βk and substituting it with the next best element βk+1.

Tolerance to spammers Figure 2(c) shows the error metric as a
function of the probability of having a spammer worker answer an
s-ranking task. The two curves correspond to the default error rate
and to an error rate of zero, i.e., honest workers that do not commit
errors. The results demonstrate that the algorithm is highly resilient
to spammers, with a low error even for unrealistically high percent-
age of spammers (e.g., more than 40%). The key observation here
is the algorithm can battle spamming effectively by detecting dis-
agreements and posting more tasks as needed.

Comparison to human-powered sorts We implemented the Com-
pare operator proposed in [5] and used it to obtain the top-k items
by performing a full sort of O. Figure 2(d) compares our algorithm
with Compare for two possible allocations of HITs to the operator.
Our algorithm outperforms Compare in terms of accuracy and total
number of HITs. Specifically, to match the accuracy of our algo-
rithm, Compare requires an order of magnitude more HITs. When
allotted twice as many HITs as our algorithm, Compare has an er-
ror that is 6x higher. The reason is that Compare computes a full
ranking of the items, which is clearly wasteful for our problem.

Comparison to max tournament We implemented the tourna-
ment max algorithm presented in [8] for obtaining the top-1 item.
We tuned tournament-max to the average behavior of our users,
which includes both spammers and honest workers who commit
mistakes. Figure 2(e) shows the error metric for tournament-max
and our proposed adaptive approach. As shown, the performance
of our algorithm is comparable, yet the difference is that we do not
require any a-priori knowledge about the behavior of human work-
ers. Moreover, our technique can work for k > 1.

4.2 Experiments over Mechanical Turk
Data We tested three types of itemsets of size 160. For k = 5

and s = 10, this size ensures that all comparison tasks will be ex-
actly s in size, and the tournament will terminate in 5 iterations,
decreasing the size of the candidate set to 80, 40, 20, 10 and 5 re-
spectively. For all generated itemsets, the items are shapes and the
goal is to find the top-k items with the largest area. The first itemset
comprises squares whose edge lengths range from 20 to 180. The
difference in size among squares is easy to discern, therefore we
consider this itemset as modeling an easy case. The second item-
set comprises polygons of varying area and varying vertex count
(between 4 and 10). The difference in shapes makes it harder to
discern differences in area, and hence we consider this a medium-
difficulty itemset. Finally, we create a high-difficulty itemset by

reducing the difference in area size among polygons.
Workers We used the workers of Amazon’s Mechanical Turk

without imposing any restrictions nor requiring qualification tests.
We paid $0.02 per task. We did not allow our algorithm to exhaust
the budget (600 HITs) in every experiment, instead, we were more
conservative in the last iteration choosing to continue posting HITs
only if the algorithm kept identifying an s-ranking task as incom-
plete.

Error metric The error metric is the same as for the simulations,
using the normalized area of each item as the value (that is, the area
of the item divided by the difference in area between neighboring
items). The results we report for each case are the average error
from 3 identical experiments.

Results Figure 2(f) shows the error metric for our algorithm as
a function of the difficulty of the itemset. For comparison, we also
plot the basic variant and the adaptive variant without the specula-
tive heuristic. The trends validate our simulation results, showing
that the adaptive variant yields a substantial drop in the overall er-
ror in all cases. The errors increase sharply for the difficult itemset,
but the actual ranking task is extremely challenging due to the very
small differences in area among shapes. (In some sense, we made
the task a bit too difficult for human workers.)

5. CONCLUSIONS
We introduced an algorithm to obtain the top-k items from a

large itemset, using the judgements of human workers in order to
compare items. The distinguishing characteristics of our approach
are that it allows workers to examine several items at a time, it does
not require any a-priori knowledge about the errors of human work-
ers, and it adapts dynamically to the varying difficulty of comparing
items and the existence of spammers. Experimental results demon-
strated that our algorithm yields accurate results, even when honest
workers are likely to make mistakes and there is a large number of
spammer workers.

Acknowledgements. This material is based upon work sup-
ported by the National Science Foundation under Grant No. 1251827.

6. REFERENCES
[1] N. Ailon. Active learning ranking from pairwise preferences

with almost optimal query complexity. In NIPS, 2011.
[2] M. S. Bernstein, D. R. Karger, R. C. Miller, and J. Brandt.

Analytic methods for optimizing realtime crowdsourcing.
CoRR, abs/1204.2995, 2012.

[3] S. Davidson, S. Khanna, T. Milo, and S. Roy. Using the crowd
for top-k and group-by queries. In ICDT, 2013.

[4] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank
aggregation methods for the web. In WWW, 2001.

[5] A. Marcus, E. Wu, D. Karger, S. Madden, and R. Miller.
Human-powered sorts and joins. Proc. VLDB Endow.,
5(1):13–24, Sept. 2011.

[6] A. Parameswaran, A. D. Sarma, H. Garcia-Molina,
N. Polyzotis, and J. Widom. Human-assisted graph search: it’s
okay to ask questions. Proc. VLDB Endow., 4(5):267–278,
Feb. 2011.

[7] L. L. Thurstone. A law of comparative judgement.
Psychological Review, 34:273–286, 1927.

[8] P. Venetis and H. Garcia-Molina. Dynamic max algorithms in
crowdsourcing environments. Technical report, Stanford
University, August 2012.

[9] P. Venetis and H. Garcia-Molina. Quality control for
comparison microtasks. In CrowdKDD 2012. Stanford,
August 2012.

