
Monadic Logs for Collaborative Web Applications

Sumit Agarwal, Daniel Bellinger, Oliver Kennedy, Ankur Upadhyay, Lukasz Ziarek
SUNY Buffalo

{sumitaga, danielbe, okennedy, ankurupa, lziarek}@buffalo.edu

Abstract
Cloud based web-applications are quickly becoming common
in modern society. A new class of such applications, collab-
orative cloud applications, are gaining in popularity as they
greatly improve remote collaboration. Most of these appli-
cations use a log structure as a coordination mechanism for
shared application state. Such structures typically store the
entire application state as well as deltas (changes sets) while
the application runs. In this paper we propose a monadic,
dependency-aware, self-cleaning log structure for collabora-
tive cloud applications, which we refer to as a monadic log.
This structure provides a rich set of analytical tools to sup-
port a variety of log transformations and rewrites. For ex-
ample, the garbage collection mechanisms already present in
any managed language will automatically bound the mem-
ory footprint of a monadic log. Moreover, a monadic log sub-
stantially eases the computational and bandwidth burdens
of a server infrastructure when compared with traditional
log structures.

1. INTRODUCTION
Over the past several years, many web and cloud based

versions of classic desktop applications have been released
(e.g. Google Docs). A natural consequence of this migra-
tion to the cloud is that applications have become collabora-
tive, with multiple clients simultaneously accessing the same
application state. Although these collaborative cloud appli-
cations are structured using a client/server model, the core
functionality of the application is typically built into the
client itself. The server’s roles are to relay state updates,
provide coordination, and persist state.

Although such features (pub/sub, atomic broadcast, and
databases respectively) are independently straightforward,
and well known solutions exist for each, developers still ac-
tively expend substantial effort to build scalable, robust, and
efficient server infrastructures for their collaborative appli-
cations. Much of this effort goes towards efficiently support-
ing specialized persistence-layer functionality. Common ex-

Copyright is held by the author/owner.
Sixteenth International Workshop on the Web and
Databases (WebDB 2013),
June 23, 2013 - New York, NY, USA.

amples include recovering from transient link failures, such
as when the host platform wakes from sleep mode, and re-
verting undesired updates made by a peer. Supporting such
features requires a tight coupling between the persistence
infrastructure and the application’s semantics.

In this paper we introduce the Laasie1 data management
system, a prototype persistence, communication, and coor-
dination infrastructure for collaborative applications. Laasie
clients are application front-ends, each maintaining and me-
diating user interactions with a local replica of the global
application state. Clients post state updates to the Laasie
infrastructure, which defines a canonical order over updates
that it receives, and ensures delivery updates to all partici-
pating clients.

A key feature of Laasie’s communications and coordina-
tion layer is that it is not stateful. In lieu of connection
state, clients actively request update monads from the in-
frastructure. Update monads are small program fragments
that express the delta between a client’s local state replica
and the global state; An update monad computes the cur-
rent global state from the client’s local state replica. Laasie
is able to generate update monads efficiently, using a novel
datastructure that we call a monadic log.

Monadic logs encode application state updates in a func-
tional form, thereby storing computation rather than effects
resulting from the update. By encoding updates as func-
tions in a general purpose composable data manipulation
language that is amenable to static analysis, monadic logs
enable a broad new class of queries and manipulations over
application state. For example, an application-specific pol-
icy might decide whether the infrastructure should choose to
fuse multiple updates together in one bulk state update (e.g.,
sending an entire image file), or to send smaller, domain-
specific transformations (e.g., brighten all pixels by 10%).
As another example, individual updates can be deleted with-
out altering the semantics of subsequent updates, effectively
rewriting the history of an application.

Through the functional state representation employed by
the monadic log, Laasie gains several other important bene-
fits: (1) Applications are entirely encapsulated in the client,
allowing developers to focus their efforts on a single code-
base. (2) Application semantics are explicit, improving the
system’s ability to automate reconciliation of conflicting up-
dates. (3) No code evaluation or query processing is ac-
tually required from the infrastructure, lowering overheads
and limiting security risks.

1Log-As-A-Service InfrastructurE

LaaS Infrastructure

U
pd

at
e

In
de

x

Client

LaaS
Proxy

Client

LaaS
Proxy

Client

LaaS
Proxy

Blocking-Poll for Updates

Write
State

Updates
(Deltas)

Δ3Δ2

Δ1

Dependencies

Figure 1: An application deployed in the Laasie
ecosystem: The Laasie infrastructure maintains a
canonical replica of the state as a DAG of delta pro-
cedures. A proxy library in each application front-
end client maintains state replicas.

Concretely, we make the following contributions.

1. We present the design of the Laasie data management
system for collaborative cloud applications.

2. We introduce the monadic log datastructure, a purely
functional representation of an application’s state, and
discuss its benefits.

3. We describe BarQL, a monad algebra-based state ma-
nipulation language designed to synergize with monadic
logs.

4. We show preliminary experiments that demonstrate
the feasibility of infrastructures based on monadic logs.

2. SYSTEM OVERVIEW
The Laasie data management system is designed to pro-

vide communication, coordination, persistence, and logging
functionality for collaborative applications. An application
in Laasie’s ecosystem consists of multiple application clients
connected to a central Laasie server infrastructure. The in-
frastructure maintains a canonical instance of the applica-
tion’s state. The infrastructure provides each client with a
view of this canonical state, and the ability to write updates
to that state. This architecture is presented in Figure 1,
and can be summarized in the following two methods that
it exposes to clients:

typedef Value (Monad)(Value v);

int write(Monad update);

Pair<Monad,int> poll(View v, int ts);

Applications write state updates functionally, as monads
that transform the prior version of the application state into
a new version. To allow the infrastructure to remain state-
less, clients poll for updates since their last request.

Laasie assigns a monotonically increasing timestamp to
each update written (this timestamp is returned by the write
operation). Our initial implementation assigns timestamps
using a centralized service. Decentralized approaches such

as those of the Isis [3] or Percolator [17] systems complement
Laasie nicely, and can be adopted to improve scalability.

Each state version is identified by the timestamp of the
most recent update applied to that version. When reading,
the client obtains an update function that transforms the
client’s local state version, identified by the timestamp pro-
vided as an argument to poll, to the most recent version of
the state, identified by the timestamp returned by poll. As
an optimization, if no updates are available since the client’s
last request, the poll request blocks until the next relevant
update occurs.

The primary purpose of the read operation is to provide
the client with an update monad that can be applied to
the client’s current view to update it to be consistent with
the most recent state. The use of a monotonically increas-
ing timestamp for updates brings to mind log-based struc-
tures common in this class of applications. This similarity
is intentional. A write operation is effectively a log-append,
timestamps are pointers into the log, and read operations
corresponds to scans through the log.

The resulting log provides an abstraction, not just for ef-
ficient updates, but also for meta-analysis of the application
state. As we will soon see, Laasie’s log abstraction is a
simple, but extremely powerful primitive for querying, mon-
itoring, and dynamically rewriting application state.

3. LOGS
Logging and related techniques frequently appear in server-

side persistence layers for cloud-based web-applications.
Keeping prior versions of application state makes it feasible
to revert unwanted changes (e.g., [22]), recover from tran-
sient link failures (e.g., [11]), or to provide an official record
of how state changes occur over time (e.g., [18]). The struc-
ture and design of optimal log for each application varies
with the application’s semantics, feature requirements, and
even its expected workload. Decisions related to checkpoint-
ing, garbage collection, and strategies for indexing the log af-
fect server/client performance, memory usage, throughput,
bandwidth, and are crucial to the design of a performant
application.

As a simple example, consider an application that needs
infrastructure support for recovery from transient link fail-
ures. If the application state is small and/or changes rapidly
(e.g., a chat client with a short history), the client can be
sent the full application state. If the application state is
large and/or changes infrequently (e.g., a text document),
it is more efficient to send the client a set of changes, or
deltas.

These two application styles lean towards opposite ex-
tremes in the space of log design. (1) Flat logs, logs which
store the most recent state of the application in a monolithic
fashion, trivially support recoverability by simply sending
the most up-to-date version of the state to a reconnecting
client. This approach has a high bandwidth cost, and re-
quires the server to be able to process state updates. (2)
Write logs, logs that store singleton or batch updates, have
a lower bandwidth cost for recovery, as clients only need a
set of deltas, but have substantially higher costs for fresh
reads, where the client requires all deltas.

In both of these log designs however, state is a conceptual
mapping between objects and their concrete values; The logs
store the results of the computation that the clients perform
via the cloud application.

A := 1 B := 1 C := A+B C := C+1

A

B

C

Figure 2: The figure depicts a classic write log struc-
ture whose entries are computations with a common
optimization: an index from variables to entries.

We propose a more radical log structure that instead stores
state as a sequence of update monads. In a monadic log, the
server does not materialize state, but instead stores state
updates as functions that encode deltas on state. Storing
state as a computation instead of explicitly makes the log
aware of update semantics. Static analysis on update mon-
ads leads to efficient support for semantics driven application
features. For example, tracking the read and write sets of
each monad allows log entries unnecessary for recovery to
be quickly identified and discarded.

3.1 Monadic Logs
Unlike traditional logs, a monadic log stores computation

instead of values. Figure 2 shows a monadic write log. Like
a traditional log, the primary mechanism by which clients
mutate a monadic log is to append updates to the tail of the
log, the write operation presented in Section 2.

The first entry conceptually adds a variable A to the
shared state and sets that variable to the value 1. Simi-
larly, the second entry in the log encodes the addition of a
variable B to the shared state and sets that variable to value
1. The third entry is a computation that reads variables A
and B from the state and assigns the results of the addition
of those variables to a variable C. The last entry updates
the values stored in C by incrementing the current value by
one.

To reify this log into a materialized application state, the
infrastructure or client need simply to execute the computa-
tion stored in the entries. The client makes a read request,
as per the poll operation presented in Section 2. The in-
frastructure identifies all log updates relevant to the client’s
view and produces a single update monad by composing all
updates in the sequence. Depending on the desired tradeoff
between compute and bandwidth costs, the infrastructure
may optimize the resulting monad, effectively reifying por-
tions of the updated state as necessary. Traditional log opti-
mizations such as skip-lists, indexes, and garbage collection
can also be applied, as shown in Figures 2 and 3.

3.2 Analysis of Monadic Logs
Storing raw computations in the log rather than the ef-

fects of those computations gives monadic logs a great deal
of flexibility. The collection of monads can be executed to
reify the log into a materialized state. In general, monadic
logs provide an expressive representation for dynamically in-
ferring security properties, monitoring, and self-healing. By
querying or rewriting individual log entries, both the server
and clients can assert and/or effect a broad range of policies
or optimizations.

The advantage of expressing the log as a collection of com-
putations is that the structure itself can encode computa-
tional dependencies, dependencies between state fragments,
or variables, and the computations necessary to execute to
calculate the value stored in that variable. By exploiting
inherent features of monadic logs we can achieve:

Dynamic Honey Potting. In today’s collaborative
world, a malicious user can gain access to an authorized ses-
sion of an application very easily. Monadic logs can revert
and flag the malicious changes as well as transitive changes
dependent upon them, once the malicious activities are de-
tected through application-agnostic mechanisms. Monadic
logs also allow replication of session state in an on-demand
fashion (i.e. when a honeypot is required), and seamless
reintegration of session replicas e.g. when a honey potted
user is cleared of wrongdoing). Information that the mali-
cious user receives through the honeypot session is limited
and/or falsified. More importantly the user’s actions are ap-
plied only to the honeypot environment, thus maintaining
the integrity of the original authorized session and resources.

Obfuscated Collaboration. The log structure of the
monadic logs provides the capability to present dynamic
views of a document to different users as predicted on a
security policy. Different users can edit the same document
simultaneously, however, each user has a unique view of the
document and/or data depending on their clearance level.
Thus, each low-clearance user will have certain fragments
of the document obscured, obfuscated, or removed entirely.
This not only allows for safe collaboration without duplica-
tion, but inherently provides a provenance mechanism.

Tracking Provenance and Reconstructing Data. A
monadic log natively provides provenance information with-
out requiring any additional metadata, or additional over-
heads. This information can be used to assert properties
about the log and/or improve security. Furthermore, this
information can be used to reconstruct the effects of the
computation (e.g., in hypothetical scenarios where the ini-
tial values are different).

Retroactive Policy Enforcement. In a scenario where
access policies needs to be enforced by deleting log entries
that violate the access policy, out of order undo’s can be
done very easily on monadic log structure. As each log entry
encodes the full semantics of its update; effects of deleting
or modifying an update are immediately propagated through
all subsequent updates.

Fluid Computation. Monadic logs make it easy to of-
fload compute-intensive tasks to the client to reduce server
load, or move such tasks from client to server if the client’s
capabilities are limited. The server itself, may be distributed,
with portions of the monadic log spread amongst many ma-
chines. Techniques like memoization and self-adjusting com-
putation can be leveraged to expedite state reification for
distributed servers.

4. BARQL
To provide rewriting, monitoring, and querying capabili-

ties over the BarQL log, the language underpinning the log
must be amenable to static analysis. As an example of a
language suitable for this purpose, we now provide a high-
level overview of BarQL [12], a state update language built
around an algebra of composition. BarQL’s composition al-
gebra makes it possible to efficiently analyze sequences of

A := 1 B := 1 C := A+B C := C+1

A

B

C

C := 1

A := 1 B := 1

A

B

C

C := 1

(A)

(B)

Figure 3: (A) The Laasie log structure, containing
an index as well as a dependency chain. Index point-
ers are shown with solid arrows and dependencies
are shown with dotted arrows. (B) Since the entries
are not stored in a collection, if dependencies are
overwritten, the log will be automatically cleaned.

Q := Q.k | {k := Q} | Q⇐ Q |map Q using Q
| Q op[θ] Q | agg[θ](Q) | agg[⇐](Q) | Q ◦Q
| filter Q using Q | if Q then Q else Q
| c | null | ∅

Figure 4: The grammar for BarQL queries. In this
grammar, k represents values of key type, c repre-
sents constant primitive values, and θ represents any
binary operation on primitive values.

state updates, making it an ideal candidate for reasoning
about updates in a monadic log.
BarQL is loosely based on the Monad Algebra [13], al-

though unlike the latter, which uses sets as its base collec-
tion type, BarQL uses maps2 and has weaker type semantics
– maps need not consist of uniform types, allowing a map
to fill the role of both a collection and a tuple type. BarQL
is intentionally limited to operations with linear computa-
tional complexity in the size of the input data; neither the
pair with nor cross-product operations of Monad Algebra are
included. Note that this is not a limitation for Laasie, as the
computation of cross products and joins can be pushed to
client front-ends.

The grammar for BarQL is given in Figure 4. BarQL uses
an unstructured hierarchical type-system, analogous to un-
structured XML or JSON. Values in BarQL are either of
primitive type, null, or collections (mappings from keys of
type k to values). Collections are total mappings, although
we say that key k is defined in a collection v if k maps to
a non-null value. When specifying a collection, we will enu-
merate only defined keys.

In BarQL, queries are monads, structures that represent
computation. Reducing the query corresponds to evaluat-
ing the computation expressed by that query. The constant
operations: c, null , ∅, are all defined as operations that pro-

2Maps are commonly referred to as hashes or dictionaries.

duce their respective constant value as output, regardless of
input. For example: 5(null) = 5

The empty collection operator ∅ creates a collection for
which all keys map to null .

The identity and singleton operators (id and {k := Q},
respectively) retain their behaviors from the monad algebra:
The identity operation returns its input unchanged, while
the singleton constructor creates a collection with a single
key k defined by the value returned by Q. For example:
{A := id}(5) = {A→ 5}

Note that the singleton constructor functions as both a
collection singleton, as well as a tuple constructor. Because
collection elements are identified by keys, we can reference
specific elements of the collection as we would reference fields
of a tuple.

The most significant way in which BarQL differs from
Monad Algebra is its use of the Merge operation (⇐) instead
of set union (∪). ⇐ combines two sets, overwriting unde-
fined entries (keys for which the collection maps to null)
with their values from the other collection.

({A := 1} ⇐ {B := 2})(null) = {A → 1, B → 2}

If a key is defined in both collections, the right collection
takes precedence.

({A := 1} ⇐ {A := 2})(null) = {A → 2}

The merge operator can be combined with singleton and
identity to define updates to collections:

(id ⇐ {A := 3})({A → 1, B → 2}) = {A → 3, B → 2}

Subscripting Q.k dereferences key k on the collection re-
turned by Q, and can be combined with other operators to
define point modifications to collections.

(id ⇐ {A := (id.A ⇐ {B := 2})})({A → {C → 1}})
= {A → {B → 2, C → 1}}

Primitive binary operators are defined monadically (op[θ]),
and include basic arithmetic, comparisons, and boolean op-
erations. These operations can be combined with identity,
singleton, and merge to define updates. For example, to
increment A by 1, we write

{id⇐ {A := (id.A) op[+] (1)}}({A→ 2}) = {A→ 3}

BarQL provides constructs for mapping, flattening and ag-
gregation. The map operation, analogous to its behavior
in the Monad Algebra applies a transformation (the using
clause) to all values in a collection, preserving key names.
The flatten (agg[⇐](Q)) operation is also similar, except
that it uses ⇐, instead of ∪ as in Monad Algebra. Ag-
gregation is defined analogously to flatten using any closed
binary operator θ operating over values of primitive type.
For example, to increment all children of the root we write:

(map id using (id+ 1))({A → 1, B → 2}) =
{A → 2, B → 3}

To increment the child C of each child of the root by 1, we
write

(map id using (id ⇐ {C := id.C + 1}))(
{A → {C → 1}, B → {C → 2, D → 1}}

) = {A → {C → 2}, B → {C → 3, D → 1}}

Finally, BarQL supports standard function conditionals,
conditional filtering of collections, as well as composition (◦)
of queries.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

To
ta

l T
hr

ou
gh

pu
t-o

pe
re

at
io

ns
 p

er
 m

s

Read Fraction

Flat Log-NODEP
Laasie Log-NODEP

HUGIN-NODEP
Laasie Log-MULTIDEP

Flat Log-MULTIDEP

Figure 5: The graph compares the total throughput
of all the three log structures (Laasie, Flat Log and
Hugin) by varying the number of read operations
and keeping the constant number of write opera-
tions.

5. PRELIMINARY RESULTS
We tested a Java-based implementation of the

Laasie Monadic Log against two other log structures. Our
first comparison is to a Flat Monadic Log which doesn’t
make use of an indexing system and is not capable of stor-
ing entry dependencies. In contrast to Laasie a read oper-
ation iterates over the entire log until it finds the desired
entry. Upon finding this entry a continued iteration will be
performed for all dependent entries.

As a second comparison point, we consider a real-world
application – the Hugin Open Source Mapping System [14].
Hugin uses a general purpose state replication system called
ICON to provide persistence and coordination functionality.
ICON is implemented in 500 lines of PHP, and supports re-
covery through a non-monadic log. The log is backed by
a single Postgres table with indexes on the columns corre-
sponding to update timestamp and the name of the variable
being updated. Update data is stored in a Postgres TEXT
blob.

Tests were uniformly run on a 2x6 core 2.5 GHz Intel
Xeon server with 64 GB of RAM; All tests were run single-
threaded. Unless otherwise specified, all results presented
are the average performance over 10 trials.

Each log consists of a fixed number of randomly gener-
ated log entries operating over an application state consist-
ing of 10,000 values. We assign the generated entry a ran-
domly selected number of read dependencies. Unless oth-
erwise stated, the set of dependencies is randomly selected
from the set of all values in the application state. For some
tests however, we limit the number of dependencies to a
predefined maximum. We generate two classes of workload:
NODEP where all entries have an empty dependency list
and MULTIDEP where all entries have a dependency list of
size greater than zero.

The first workload consists of two test cases. In the first
case the Laasie Log and Flat Log structures were tested
with NODEP for 1,000,000 operations and Hugin NODEP
for 10,000 operations. In the second case the Laasie and Flat
Log structures were tested with MULTIDEP for 1,000 op-

 0.1

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

To
ta

l T
hr

ou
gh

pu
t-o

pe
re

at
io

ns
 p

er
 m

s

Multi Dependency Fraction

Laasie Log (max dep - 10)
Laasie Log (max dep - 20)
Laasie Log (max dep - 50)

Figure 6: The graph compares the total throughput
of Laasie log versions having different maximum size
of dependency list by varying the number of log en-
tries having multiple dependencies.

erations. For this workload we measured the total through-
put (read throughput and write throughput) by varying
the number of read operations while keeping the number
of write operations constant. The number of write opera-
tions on the Lassie and Flat Log was increased from 10,000
to 1,000,000. For the NODEP case, throughputs for both
log sizes are comparable; The larger log was necessary to
avoid sub-second runtimes for the Laasie log and produce
more stable performance results. Our results for the first
workload are shown in Figure 5.

The NODEP Laasie Log performs much better than its
counterparts (NODEP Flat Log and NODEP Hugin Log).
The total throughput of the NODEP Laasie Log remains
nearly constant regardless of the read/write ratio. This is in
contrast to the NODEP Flat Log of which total throughput
decreases for high-read workloads. The MULTIDEP Laasie
Log performs better than the MULTIDEP Flat Log, and
remains minimally affected by the read/write ratio. Unlike
our monadic structures, write operations in the Hugin Log
are more expensive than reads, because Hugin performs an
explicit garbage collection step on every write. Thus, unlike
the monadic log structures, Hugin’s performance actually
improves for high-read workloads.

The second workload compared the total throughput of
Laasie Log instances for maximum dependency list sizes of
10,20,and 50. The workload was a mixture of NODEP and
MULTIDEP operations, ranging from a 10% NODEP/90%
MULTIDEP split to 90%/10%. The workload consisted of
10,000 write operations. Our results for the second workload
are shown in Figure 6.

As the percentage of MULTIDEP operations increases and
the size of the dependency lists increases, the total through-
put decreases significantly. This is a result of an increased
number of operations depending on a large number of previ-
ous operations. These dependencies prevent old values from
being discarded by overwrites. The most drastic decrease in
performance can be seen between 20 and 30 percent of all
operations being MULTIDEP. This behavior is characteris-
tic of large dependency chains being developed as a result
of a lack of deletes from NODEP operations. With fewer
NODEP operations larger portions of the log are being re-
turned for read operations decreasing performance. More
realistic workloads will have a more structured dependency
sets, which are likely to result in smaller dependency chains.

6. RELATED WORK
The Laasie project brings together databases, program-

ming languages, and distributed systems. Our problem space
has been explored by each area individually, but to the best
of our knowledge, Laasie is the first solution to bring to-
gether all three.

Update Sequencing and Logs. A core challenge in
many distributed systems is applying canonical orders to
update sets. Solutions based on a distributed log have been
developed for distributed concurrency control [6, 2], dis-
tributed collection types [7], and several domain-specific sys-
tems such as Antiquity [20], Aurora [1] and LiveObjects [16].

LiveObjects in particular targets an application domain
similar to Laasie’s. However, the core focus of LiveObjects
is implementing a fully peer-to-peer distributed log – the co-
ordination layer, while Laasie focuses on persistence and re-
covery – the data management layer. The approaches taken
by these two systems are orthogonal and may be combined.

Algebraic Properties of State Updates. Algebras
built over sequences of updates have been used to optimize
distributed systems. Commutativity [21, 19] in particular,
plays a crucial role in detecting conflicting updates that must
be resolved. Unfortunately, many of the systems results in
this area have been in the context of domain-specific appli-
cations [19, 15], such as edits to textual data.

Laasie employs an authoritative ordering over updates to
prevent conflicts. In the absence of such an ordering, tech-
niques must be applied to resolve conflicts as they occur.
The Operational Transform [8] and Edit Lenses [10] are two
approaches to resolution. These techniques can relevant to
Laasie, as interactivity requirements can necessitate the use
of view-based optimistic concurrency control protocols [9].

Functional Updates. Functional state updates are used
frequently by the database community, especially in the con-
text of distributed databases. Two concrete examples are
Starburst [4], and BigTable [5].

Functional updates have appeared previously in the con-
text of log-based recovery [11]. However, in such systems,
the server is responsible for reifying the updates before com-
mitting them to the log. For a sufficiently complex state
manipulation language, this is not scalable.

7. CONCLUSION
In this paper we introduced the design of the Laasie data

management system for collaborative cloud applications.
Laasie, at its heart, is based on a low-level monadic, self-
cleaning log structure. By dramatically changing the way in
which data is represented within the log, we believe Laasie
will be able to support semantics driven, dynamic restruc-
turings of the log. Preliminary experiments on our log in-
frastructure indicate the monadic logs are a viable imple-
mentation structure.

8. REFERENCES
[1] Balazinska, M., Balakrishnan, H., Madden, S.,

and Stonebraker, M. Availability-Consistency
Trade-Offs in a Fault-Tolerant Stream Processing
System. Tech. rep., MIT, 2004.

[2] Bernstein, P. A., Reid, C., and Das, S. Hyder–A
Transactional Record Manager for Shared Flash.
CIDR (2011).

[3] Birman, K., and Cooper, R. The ISIS project: Real
experience with a fault tolerant programming system.
In SIGOPS (1990), pp. 1–5.

[4] Ceri, S., and Widom, J. Production rules in parallel
and distributed database environments. PVLDB
(1992).

[5] Chang, F., Dean, J., Ghemawat, S., Hsieh, W.,
Wallach, D., Burrows, M., Chandra, T., Fikes,
A., and Gruber, R. Bigtable: A distributed storage
system for structured data. TOCS 26, 2 (2008), 4.

[6] Ellis, C. A., and Gibbs, S. J. Concurrency control
in groupware systems. SIGMOD (1989).

[7] Eugster, P. T., and Guerraoui, R. Distributed
asynchronous collections: Abstractions for
publish/subscribe interaction. ECOOP (2000).

[8] Feldman, A. J., Zeller, W. P., Freedman, M. J.,
and Felten, E. W. SPORC: Group Collaboration
using Untrusted Cloud Resources. In OSDI (2010).

[9] Gupta, N., Demers, A., Gehrke, J.,
Unterbrunner, P., and White, W. Scalability for
virtual worlds. In ICDE (2009), pp. 1311–1314.

[10] Hofmann, M., Pierce, B., and Wagner, D. Edit
lenses. In SIGPLAN-SIGACT (2012), pp. 495–508.

[11] Hunt, P., Konar, M., Junqueira, F. P., and
Reed, B. Zookeeper: Wait-free coordination for
internet-scale systems. In USENIX ATC (2010),
vol. 10.

[12] Kennedy, O., and Ziarek, L. Barql: Collaborating
through change. Tech. rep., CORR, arXiv:1303.4471,
2013.

[13] Lellahi, K., and Tannen, V. A calculus for
collections and aggregates. In Category Theory and
Computer Science (1997), Springer, pp. 261–280.

[14] Medieval Software. The hugin mapper.
http://hugin-mapper.sourceforge.net.

[15] Oster, G., Urso, P., Molli, P., and Imine, A.
Data Consistency for P2P Collaborative Editing. In
CSCW (2006), p. 259.

[16] Ostrowski, K., and Birman, K. Storing and
accessing live mashup content in the cloud. SIGOPS
Review 44, 2 (Apr. 2010).

[17] Peng, D., and Dabek, F. Large-scale incremental
processing using distributed transactions and
notifications. In OSDI (2010), pp. 1–15.

[18] Piazza Technologies, Inc. Piazza.
http://www.piazza.com.

[19] Shapiro, M., and Preguiça, N. Designing a
commutative replicated data type. Tech. Rep.
arXiv:0710.1784, CORR, 2007.

[20] Weatherspoon, H., Eaton, P., Chun, B.-G., and
Kubiatowicz, J. Antiquity: exploiting a secure log
for wide-area distributed storage. In EuroSys (2007).

[21] Weihl, W. E. Commutativity-based concurrency
control for abstract data types. IEEE TC 37, 12
(1988), 1488–1505.

[22] Wikimedia Commons. Wikipedia.
http://www.wikipedia.org.

