
Containment for tree patterns with attribute value
comparisons

Evgeny Sherkhonov
ISLA, University of Amsterdam

e.sherkhonov@uva.nl

Maarten Marx
ISLA, University of Amsterdam

maartenmarx@uva.nl

ABSTRACT
Tree patterns (TP) is a simple and widely used fragment of
XPath. The problem of containment in TP has been exten-
sively studied previously. It was shown that the containment
problem ranges from PTime to PSpace depending on the
available constructs.

In this paper we study the complexity of the containment
problem for tree patterns with attribute value comparisons.
We show that the complexity ranges between PTime and
PSpace. We distinguish the parameters which have to be
taken into account in the containment problem: (i) available
axes, (ii) type of comparisons (e.g. 6=-comparions), (iii) the
underlying domain for attribute values (e.g. linear dense
order) and (iv) optionality of attributes.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages

General Terms
Languages, Theory

Keywords
XML, Tree Patterns, Containment

1. INTRODUCTION
Tree patterns (TP) is a natural query language for XML

which is used in many XML data management problems.
They can be seen as the conjunctive downward fragment of
XPath. Equivalently, they can be seen as trees, see Figure 1.
The tree pattern containment and equivalence problems are
essential in the context of query optimization. In [2] it was
shown that the containment problem for basic tree patterns
(that is, tree patterns constructed using child, descendent
and filter expression) is solvable in PTime. Adding the wild-
card rises the complexity to coNP [12]. Assuming a finite
alphabet further lifts the complexity to PSpace [13].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright is held by the author/owner. Sixteenth International Workshop
on the Web and Databases (WebDB 2013), June 23, 2013 - New York, NY,
USA.

p

t

v

s

Figure 1: The tree pattern corresponding to the
XPath expression /p[t]//s[.//v]. The square box
is the output node.

In this paper we look at tree patterns expanded with at-
tribute value comparisons. In [1], the containment problem
with such comparison has been studied and it was shown
that the containment problem is ΠP

2 -complete. However,
the ΠP

2 -hardness proof heavily uses comparisons between
attribute values of different nodes, a feature which is not
expressible in Core XPath. As a positive counterpart, a
coNP upper bound for containment was shown in the case
when comparisons are restricted to either so-called left semi-
interval or right semi-interval attribute constraints. For an
attribute a and constant c, an attribute constraint @a op c
is left semi-interval if op ∈ {<,≤,=}.

The main result of this paper is that the containment
problem of tree patterns expanded with both left and right
semi-interval constraints is also in coNP. Furthermore, this
upper bound holds for the cases when we make certain as-
sumption on the underlying domain D for attribute values.
More precisely, we show that all the complexity results still
hold for the cases when D is dense or discrete infinite linear
order, with or without endpoints, or finite linear order. As
another parameter for the containment problem, we consider
optionality of attributes: we show that the complexity rises
to PSpace when at least one attribute is required in every
node. If constraints stating that attributes are required at
nodes with a certain label (as can be expressed in DTD’s)
are added, containment remains in coNP. In all our lower
bound proofs, we only use the operators = and 6=.

All the coNP upper bounds are obtained from a suit-
able polynomial reduction to the containment problem in
TP¬

g

(tree patterns with guarded label negation) over multi-
labeled trees. Guarded label negation is the construct p \
{q1, . . . , qk} meaning a p-node which does not contain labels
q1, . . . , qk.

Table 1 summarizes our main results. The paper is or-
ganized as follows. Section 2 contains preliminaries, Sec-

lower bounds upper bounds
operators =, 6= all
attribute-free PTime [2] coNP [12]
optional attributes coNP, (Prop 3) coNP, (Prop 2)
required attributes PSpace, (Prop 3) PSpace

Table 1: Complexity results for tree patterns with
attribute value comparisons.

tion 3 all results mentioned in Table 1 and Section 4 dis-
cusses tractable cases and tractable sound algorithms. We
conclude with a list of open problems.

1.1 Related work
The containment problem in various XPath fragments has

been a topic of wide interest for the past several years. A
polynomial time algorithm for tree patterns without wild-
card based on homomorphism between queries was given in
[2]. The main result of Miklau and Suciu [12] is the coNP-
completeness of containment where child, descendent, wild-
card axes and filter expression are present. Almost a com-
plete picture of the containment problem in the XPath frag-
ments with disjunction, in the presence of DTDs and vari-
ables was given in [13]. Notably, it was shown that with a fi-
nite alphabet the containment problem rises to PSpace. [14]
gives decidability results for various fragments with DTDs
and a class of integrity constraints. XPath containment in
the presence of dependency constraints was studied in [7, 8].

A closely related problem is XPath satisfiability [9, 3].
Query containment reduces to XPath satisfiability in frag-
ments with enough expressive power (e.g. with negation and
filter expressions). In [5], the query evaluation and satisfi-
ability problems for Boolean combinations of tree patterns
with equality and inequality constraints on data values were
studied. Recently the containment of Boolean combinations
of tree patterns was studied in [6].

A closely related work is [1], where the containment prob-
lem for tree patterns with general arithmetic comparisons
was considered. In particular, their fragment is able to ex-
press data comparison of two different nodes. Afrati et al.
show that containment in this fragment is ΠP

2 -complete.

2. PRELIMINARIES
We work with node-labelled unranked finite trees, where

the node labels are elements of an infinite set of tag names
Σ. Formally, a tree over Σ is a tuple (N,E, r, ρ), where N ,
the set of nodes, is a prefix closed set of finite sequences of
natural numbers, E = {(〈n1, . . . , nk〉, 〈n1, . . . , nk, nk+1〉) |
〈n1, . . . , nk+1〉 ∈ N} is the child relation, r = 〈〉 is the root
of the tree and ρ is the function assigning to each node in
N a finite subset of Σ. Let A be an alphabet of attribute
names. A tree with attributes is a tree extended with a
partial function att : N × A → D, where D is a set of data
values. When we make no restrictions, we assume that D is
a dense linear order without endpoints. Trees in which ρ(·)
is always a singleton are called single-labelled or XML trees.
Trees without this restriction are called multi-labeled trees.
By T.n we denote the subtree of T rooted in n. We denote by
E+ the descendant relation, which is the transitive closure
of the child relation E. A path from a node n to a node m
is a sequence of nodes n = n0, . . . , nk = m, with k > 0, such
that for each i ≤ k, (ni, ni+1) ∈ E.

Definition 1. (Tree Patterns with attribute value compar-
isons and label negation) Let ¬Σ = {¬p | p ∈ Σ}. A

tree pattern is a tuple t = (N,E/, E//, r, o, ρ) such that
(N,E/ ∪ E//, r, ρ) is a tree, where N is the set of nodes,

E/, E// ⊆ N2, such that E/ ∩ E// = ∅, are the sets of child
and descendent edges respectively, r is the root of the tree,
o is the output node and ρ is the labeling function assign-
ing to each node in N a finite set of labels from Σ, a finite
set of labels from ¬Σ and a finite set of value comparisons
@a op c, where a ∈ A, c ∈ D and op ∈ {=, 6=, <,>,≤,≥}.
A tree pattern is Boolean if o = r.

The semantics of tree patterns is given in terms of embed-
dings.

Definition 2. (Embedding) Let t = (N,E/, E//, r, o, ρ) be
a tree pattern and T = (N ′, E′, r′, ρ′, att′) a tree over Σ with
attributes in A and values in D. A function e : N → N ′ is
called an embedding of t into T if the following conditions
are satisfied.

(i) Root preserving. e(r) = r′,
(ii) Edge preserving. For every (n1, n2) ∈ E/(E//), it

holds that (e(n1), e(n2)) ∈ E′(E′+),
(iii) Label preserving. For every n ∈ N , if p ∈ ρ(n) then

p ∈ ρ′(e(n)) and if ¬p ∈ ρ(n) then p 6∈ ρ′(e(n)),
(iv) Attribute comparison preserving. For every n ∈ N , if

@a op c ∈ ρ(n) then att′(e(n), a) = c′ and D |= c′ op c
for op ∈ {=, 6=, <,>,≤,≥}.

By t(T) we denote the result of applying t to T , defined as
t(T) = {e(o) | e is an embedding of t into T}.

Containment problem

Definition 3. Let t1 and t2 be two tree patterns. We say
that t1 is contained in t2, notation t1 ⊆ t2, if for every
tree T , t1(T) ⊆ t2(T). Containment over single-labelled
trees with attributes is denoted by ⊆, and containment over
multi-labelled attribute-free trees by ⊆ML.

As usual (see [12, 10]), the tree pattern containment problem
can be reduced to a containment problem of Boolean tree
patterns only. Thus we will concentrate on studying the
complexity of the containment problem of Boolean tree pat-
terns only. We now give an equivalent definition of Boolean
tree patterns via modal logic style formulas. Formulas of
TP@ are defined by the following grammar.

ϕ ::= p | > | @a op c | ϕ ∧ ϕ | 〈↓〉ϕ | 〈↓+〉ϕ,

where p ∈ Σ, a ∈ A, c ∈ D and op ∈ {=, 6=, <,>,≤,≥}.
We then give the semantics for TP@ formulas. Let T =
(N,E, r, ρ, att) be a tree over Σ with attributes in A and
values in D, and n a node in T .

• T, n |= >,
• T, n |= p iff p ∈ ρ(n),
• T, n |= @a op c iff att(n, a) = c′ and D |= c′ op c,
• T, n |= ϕ ∧ ψ iff T, n |= ϕ and T, n |= ψ,
• T, n |= 〈↓〉ϕ iff there is a node m with (n,m) ∈ E and
T,m |= ϕ,
• T, n |= 〈↓+〉ϕ iff there is a node m with (n,m) ∈ E+

and T,m |= ϕ.

Sometimes we write T |= ϕ to denote T, r |= ϕ. We say that
ϕ is contained in ψ if for every tree T and n ∈ T we have
T, n |= ϕ implies T, n |= ψ. Given a containment problem
ϕ ⊆ ψ in a fragment of TP@, by Σp,Σa and Σc we denote
respectively the sets of labels, attribute names and elements
of D appearing in ϕ or ψ. Each tree pattern with attribute
value comparisons can be transformed into a formula in TP@

and vice versa [12]. Let ϕ be in TP@, by t(ϕ) we denote its
corresponding tree pattern representation. Vice versa, if t is
a tree pattern with attribute comparisons, by ϕ(t) we denote
the corresponding formula in TP@.

Proposition 1. Let t = (N,E/, E//, r, r, ρ) be a Boolean
tree pattern with comparisons, ϕ(t) its formula representa-
tion in TP@, T = (N ′, E′, r′, ρ′, att′) a tree over Σ, A and
D, and n a node in T . Then there exists an embedding e
from ϕ into T.n if and only if T, n |= ϕ.
Thus Boolean tree pattern containment can be reduced to
containment of TP@ formulas.

By TP we denote tree patterns without attribute value
comparisons. Furthermore, by TPC

O, where O ⊂ {=, 6=, <,>
,≤,≥} and C ⊂ {@, ↓, ↓+,>}, the corresponding fragments
of TP@ with the constructs from C and attribute value com-
parisons with operations from O. Here ↓, ↓+ and > indicate
the tree patterns allow child, descendent and wildcard con-
structs.
Expansions. By TP@,S , where S ⊆ {∨,¬g}, we denote
the formulas of TP@ extended by disjunction and guarded
label negation, p ∧ ¬q1 ∧ . . . ∧ ¬qk, where p, q1, . . . , qk are
labels from Σ. By TPS , S ⊆ {∨,¬g} we denote the attribute

value comparisons free fragment of TP@,∨,¬g

. We assume
T, n |= p∧¬q1∧. . .∧¬qk iff p ∈ ρ(n) and qi 6∈ ρ(n), 1 ≤ i ≤ k.

Similarly to Lemma 3 in [12], we can prove the following
proposition which is useful for our upper and lower bound
proofs.

Proposition 2. Let S = ∅ or S = {¬g}. Let ϕ be a
TP@,S formula and ∆ a finite set of TP@,S formulas. Then
there are PTime computable TP@,S formulas ϕ′ and ψ′ such
that

ϕ ⊆
∨

∆ iff ϕ′ ⊆ ψ′.

The same holds for the case of multi-labeled trees.

We define the translation (̃·) which assigns a label to an at-

tribute value comparison, @̃a op c = p@a op c. This mapping

then can be homomorphically extended to the translation (̃·)
from formulas in TP@ over Σ, A and D to formulas without
attribute value comparisons in TP over Σ′ = Σ ∪ {p@a op c |
op ∈ {=, 6=, <,>,≤,≥}, a ∈ A, c ∈ D}.
3. CONTAINMENT FOR TREE PATTERNS

WITH ATTRIBUTE VALUE COMPARISONS
In this section we first show that the containment problem

in TP∨,¬
g

over multi-labeled trees is in coNP. Then using
this fact we can show that the containment in TP@ is in
coNP as well.

Theorem 1. The containment problem in TP∨,¬
g

over
multi-labeled trees is in coNP.

Proof. The proof is similar to the arguments from [12]

and [13]. Let ϕ be a TP¬
g

formula. For simplicity, we

use the same letter for a TP¬
g

formula and its tree pattern
representation. By σ(ϕ) we denote the set of labels in Σ
occurring in ϕ. Let Σ0 ⊂ Σ be a finite set of labels such
that σ(ϕ) ⊆ Σ0. Intuitively we define a canonical tree for ϕ
as a tree obtained from the tree representation of ϕ by first
replacing every descendent edge by a child-path where each
node is labeled with a special symbol].

Let ρN : N → 2Σ0∪¬Σ0 be the node labeling function of
ϕ. We say that a function ρ : N → 2Σ0 positively extends
ρN if ρN (v) �Σ⊆ ρ(v) and ρ(v) is consistent with ρN (v) for
every v ∈ N .

Now we define canonical models. Let {d1, . . . dn} be the
descendant edges of ϕ. Given n non-negative numbers ū =
(u1, . . . , un) and ρ : N → 2Σ0 which positively extends ρN ,
we define the (ū, ρ)-extension of ϕ, denoted as ϕ[ū, ρ], as the
tree pattern obtained by replacing each descendant edge di
with a child-path of length ui where each node is labeled by
{>}. Furthermore, the labeling in ϕ[ū, ρ] is according to ρ.

Note that for any tree T and ϕ ∈ TP¬
g

, if there exists
an embedding e : ϕ → T , then there exist ū, and a unique
embedding e′ : ϕ[ū, ρ] → T , where ρ = ρT �Σ0 (ρT is the
labeling function of T), such that e′ extends e.

A canonical tree t(ϕ[ū, ρ]) is the tree obtained from ϕ[ū, ρ]
by changing the labels of the nodes labeled by {>} to]. Such
nodes labeled with] are called special.

We define the >-length of a tree pattern ψ ∈ TP¬
g

as the
largest number k such that there exist k nodes v1, . . . , vk
connected by child edges and ρ(vi) = {>} in ψ. The coNP
upper bound directly follows from the next lemma.

Lemma 1. Let ϕ and ψ be in TP∨,¬
g

, Σ0 = σ(ϕ)∪ σ(ψ).
Then ϕ 6⊆ML ψ if and only if there exists a tree T over Σ0

such that T |= ϕ and T 6|= ψ and the size of T is polynomial
in the size of ϕ and ψ.

Proof of Lemma. The direction (⇐) is obvious.
(⇒) Assume there exists a tree T with T |= ϕ and T 6|= ψ.

W.l.o.g. we can assume that the label sets of T are subsets
of Σ0 ⊂ Σ, the set of labels occurring in ϕ or ψ. Let

∨
i ϕi

and
∨

j ψj be the DNFs of ϕ and ψ.

Since T |= ϕ, there exists an embedding e : ϕi → T for
some i. Let e′ be the corresponding embedding of ϕi[ū, ρ]
into T , where ρ is the labeling function of T . Let T1 be the
canonical tree t(ϕi[ū, ρ]). Note that the number of nodes in
T1 not labeled with] is at most the number of nodes in ϕi.

We show that T1 6|= ψ. Suppose the opposite, i.e. there
exists an embedding e1 : ψj → T1 for some j. We then de-
fine the function f : ψj → T by composing e1 and e′. The
function f preserves the structure, since T1 and ϕi[ū, ρ] have
the same structure and e1 and e′ are embeddings. Moreover,
f preservers the labels. Let v be a node in ψj . We consider
two cases:
• p ∈ ρN (v). Then p is in the label of e1(v) in T1. In

particular, e1(v) is not a special node, i.e. not labeled
with]. Thus, e1(v) ∈ dom(e′) and, therefore, p is in
the label of f(v).

• ¬p ∈ ρN (v). As ψj ∈ TP¬
g

, there exists a label
q ∈ ρ(v) and, thus, e1(v) is not a special node. Thus
we have that p is not in the label of e1(v), as e1 is an
embedding. Since the labeling of the non-special nodes
in T1 and T coincide, we have that p is not in the label
of f(v) either.

Hence, we have T |= ψj , as f is an embedding from ψj into
T , which is a contradiction. Thus, T1 6|= ψ.

Note that T1 is not yet our desired tree of polynomial size,
since the paths of special nodes in T1 might be too long.
However, we can shorten them. We define the tuple of non-
negative numbers v̄ = (v1, . . . , vn) as vi = min(ui, k + 1),
where k is the >-length of ψj . Then the canonical tree
T2 := t(ϕi[v̄, ρ]) is of polynomial size in the size ϕ and ψ.
We can show that still T2 6|= ψj . For this we need the fol-
lowing claim.

Claim 1. Let a singleton path be a path in which each
node, but the last one, has exactly one child. Let T be a tree
such that T 6|= ψ for ψ ∈ TP¬

g

, and let k be the maximal

>-length of ψ. Let also v1, . . . , vl be a singleton path in T
labeled with] and such that l > k+ 1. Let T ′ be the tree ob-
tained from T by deleting the node vl and adding its children
to vl−1. Then still T ′ 6|= ψ.

The intuition for the proof of this claim lies in the fact that
if there was an embedding of ψ into T ′, then it could be
extended to an embedding into T , as there must be a de-
scendant edge which can be mapped on such a long singleton
path of special nodes in T ′.

Now this claim can be used to show that T2 6|= ψj . Recall
that T1 = t(ϕi[ū, ρ]) 6|= ψj . Applying the claim ui − (k + 1)
times for the ith singleton path of special nodes, we get that
T2 6|= ψj . Furthermore, T2 is of polynomial size in the size
of ϕ and ψ.

3.1 Attribute value comparisons over dense un-
bounded order

We now show that the containment problem in TP@ over
trees with attributes can be reduced in PTime to the con-
tainment problem in TP∨,¬

g

over multi-labeled attribute-
free trees. Thus the containment for TP@ is in coNP as
well. Here we make an assumption that the domain of at-
tribute values is a dense linear order. The main result of
this section is the following.

Theorem 2. Let S = {∨,¬g}. The containment problem
in TP@,S over trees with attributes is in coNP.

Given the containment problem ϕ ⊆ ψ for ϕ,ψ ∈ TP@,S , we
reduce it to the containment problem ϕ′ ⊆ML ψ

′ in TP¬
g,S ,

which is in coNP by Theorem 1. Thus Theorem 2 is a
consequence of the following lemma.

Lemma 2. Let S ⊆ {∨,¬g} and ϕ,ψ be TP@,S formulas.

Then there exist PTime computable TP¬
g,S formulas ϕ′ and

ψ′ such that

ϕ ⊆ ψ iff ϕ′ ⊆ML ψ
′.

The same holds for the case of multi-labeled trees.

Proof. We take ϕ′ := ϕ̃ and ψ′ := ψ̃∨Ax, where (̃·) was
defined in Section 2 and Ax is the disjunction of the formulas
in Figure 2. There we use the abbreviation 〈↓∗〉θ = θ∨〈↓+〉θ.
Note that the formula Ax is in TP∨,¬

g

. We then can show
the following.

Claim 2. Let T = (N,E, r, ρ) be a multi-labeled tree over
Σ′ such that T, r 6|= Ax. Then for every a ∈ Σa, c ∈ Σc,
node n ∈ N , exactly one of the following holds.

(i) there is no p@a op c ∈ ρ(n) for every op ∈ {=, 6=,≥,≤
, <,>},

(ii) there is exactly one p@a=c ∈ ρ(n) and for every c1 ∈ Σc

it holds that p@a op c1 ∈ ρ(n) iff D |= c op c1,
(iii) there is no p@a=c ∈ ρ(n) and there exists c′ ∈ D \ Σc

such that for every c1 ∈ Σc it holds that p@a op c1 ∈
ρ(n) iff D |= c′ op c1.

We now prove that ϕ ⊆ ψ iff ϕ′ ⊆ML ψ
′,

(⇒) Let T = (N,E, r, ρ) be a multi-labeled tree such that
T, r |= ϕ′ and T, r 6|= ψ′. W.l.o.g we can assume that T is
defined over Σ′. Then we define a single-labeled tree T ′ :=
(N,E, r, l, att), where l is the labeling function and att is a
partial function assigning a value in D to a given node and
an attribute name, as follows:

• For p ∈ Σp, l(n) = p iff p ∈ ρ(n). If there is no p ∈ Σp

such that p ∈ ρ(n), we set l(n) = z for a fresh symbol
z.

For every pi, pj ∈ Σp,

〈↓∗〉(pi ∧ pj), (Label)

For every a ∈ Σa, c, c1, c2 ∈ Σc,

〈↓∗〉(p@a=c1 ∧ p@a=c2), (SName)

〈↓∗〉(p@a=c ∧ p@a 6=c), (Eq)

For every a ∈ Σa, c ∈ Σc and R,S in {<,=, >} with R 6= S,

〈↓∗〉(p@aRc ∧ p@aSc), (MExcl)

For every a ∈ Σa, c, c1, c2 ∈ Σc and R,S ∈ {6=,≤,≥, <,>}
with R 6= S,

〈↓∗〉(p@aRc1 ∧ ¬p@a=c ∧ ¬p@a>c2 ∧ ¬p@a<c2), (DNeg)

〈↓∗〉(p@a≤c ∧ ¬p@a=c ∧ ¬p@a<c), (LEQ1)

〈↓∗〉(p@a≥c ∧ ¬p@a=c ∧ ¬p@a>c), (GEQ1)

〈↓∗〉(p@a=c ∧ ¬p@a≤c), (LEQ2)

〈↓∗〉(p@a=c ∧ ¬p@a≥c), (GEQ2)

〈↓∗〉(p@a<c ∧ ¬p@a≤c), (LEQ3)

〈↓∗〉(p@a>c ∧ ¬p@a≥c), (GEQ3)

〈↓∗〉(p@a<c ∧ ¬p@a6=c), (LNEQ)

〈↓∗〉(p@a>c ∧ ¬p@a6=c), (GNEQ)

〈↓∗〉(p@a 6=c ∧ ¬p@a<c ∧ ¬p@a>c), (TRI)

〈↓∗〉(p@a≥c ∧ p@a≤c ∧ ¬p@a=c), (LEQGEQ)

For every c1 < c2, c1, c2 ∈ Σc, add the disjuncts,

〈↓∗〉(p@a<c1 ∧ ¬p@a<c2), (Order1)

〈↓∗〉(p@a>c2 ∧ ¬p@a>c1), (Order2)

〈↓∗〉(p@a=c1 ∧ ¬p@a<c2), (Order3)

〈↓∗〉(p@a=c2 ∧ ¬p@a>c1). (Order4)

Figure 2: The disjuncts of the formula Ax from
Lemma 2

• att(n, a) =


undefined if there is no p@a op c1 in ρ(n),

c if p@a=c ∈ ρ(n),

c′ from Claim 2, (iii), otherwise.

We claim that T ′ is well defined. Indeed, (Label) ensures
that every node is labeled by exactly one label from Σp or by
z. Morever, the function att is well defined since exactly one
of the conditions in the definition of att is fulfilled, according
to Claim 2. By induction, using Claim 2, we can show that

for every θ ∈ TP@,S , T, n |= θ̃ iff T ′, n |= θ. Thus, it follows
T ′, r |= ϕ and T ′, r 6|= ψ which was desired.

(⇐) Let T = (N,E, r, l, att) be a single-labeled tree such
that T |= ϕ and T 6|= ψ. We define the tree T ′ := (N,E, r, ρ),
where ρ is defined as follows:

• For p ∈ Σp, p ∈ ρ(n) iff p = l(n),
• p@a=c ∈ ρ(n) iff att(n, a) = c,
• p@a op c ∈ ρ(n) iff att(n, a) = c1 and D |= c1 op c for
op ∈ {6=,≤,≥, <,>}, c ∈ Σc.

It is straightforward to check that T ′ does not satisfy any of
the disjuncts in ψ′. Thus, we obtain T ′ |= ϕ′ and T ′ 6|= ψ′.

Now, if ∨ ∈ S, we are done. In the remaining cases we
apply Proposition 2 to remove the disjunctions in Ax where
needed. Finally, in case of multi-labeled trees we do not
include formulas (Label) as the disjuncts of Ax.

3.1.1 Lower bound
We now give a lower bound for a small fragment of TP@.
Proposition 3. The containment problem in TP@,↓,↓+

=,6=
is coNP-hard.

Proof. We reduce a 3SAT problem to a non-containment

problem in TP@,↓,↓+
=,6= .

Firstly, we can use disjunction of tree patterns on the right
side of the containment problem, due to Proposition 2.

Let Q be the conjunction of clauses Ci = (Xi
1 ∨ Xi

2 ∨
Xi

3), 1 ≤ i ≤ k over the variables {x1, . . . , xn}, where Xi
j are

literals. From Q, we construct in PTime two formulas over
the signature Σ = {r, b}, attribute names A = {a1, . . . , an}
and an attribute domain D containing values {0, 1, 2} as
follows.

We define ϕ := r ∧ 〈↓〉(b ∧@a1 6= 2 ∧ . . . ∧@an 6= 2) and

ψ :=
∨k

i=1〈↓〉(b ∧B
i
1 ∧Bi

2 ∧Bi
3), where Bi

j = (@al = 0) iff

Xi
j = xl in Ci and Bi

j = (@al 6= 0) iff Xi
j = ¬xl in Ci.

We claim that Q is satisfiable if and only if ϕ 6⊆ ψ.

3.2 Restricting the domain of attribute values
Theorem 2 was proved under the assumption that the do-

main for attribute values is dense unbounded linear order.
In fact, if we further restrict the domain, the coNP upper
bound for containment still holds in these cases.

Proposition 4. Let S = {∨,¬g} and D be a linear order
such that it is one of the following:

(i) finite,
(ii) discrete,

(iii) dense or discrete with one or two endpoints.
Then the containment problem in TP@,S over single-labeled
trees with the domain of attribute values D is in coNP.

Proof. (Sketch) All the items can be proved using a vari-
ant of Lemma 2. That is, we reduce in PTime a given con-
tainment problem ϕ ⊆ ψ to the containment in TP¬

g,S over
multi-labeled attribute-free trees. The reduction has the
form ϕ′ := ϕ̃ and ψ′ := ψ̃ ∨ Ax ∨ Axk, where Ax is in Fig-
ure 2 and Axk, k ∈ {(Fin), (Discr), (End)} is constructed
according to the cases.

In case the domain of attribute values D is finite, we take
Ax(Fin) as the disjunction of the formulas: for every a ∈ Σa,
c ∈ Σc and op ∈ {=, 6=, <,>,≤,≥}:

〈↓∗〉(p@a op c ∧ ¬p@a=c1 ∧ . . . ∧ ¬p@a=ck). (Fin)

If D is discrete, then Ax(Discr) is the disjunction of the for-
mulas: for every a ∈ Σa, c1, c2 ∈ Σc such that c1 < c2 in D
and there is no c′ in D with c1 < c′ < c2,

〈↓∗〉(p@a>c1 ∧ p@a<c2). (Discr)

Finally, let D be dense or discrete with one or two endpoints.
If D is dense, take Ax(End) as the disjunction of Ax from
Figure 2 and the following formulas:

If D has the least endpoint cl, for every a ∈ Σa :

〈↓∗〉p@a<cl . (LEnd)

If D has the greatest endpoint cg, for every a ∈ Σa:

〈↓∗〉p@a>cg . (REnd)

In case D is discrete linear order, Ax(End) additionally has
(Discr) as a disjunct.

3.3 Required attributes
In Section 3 we dealt with the case when attributes are

optional. We now consider the cases when some attributes

are required. We say that an attribute a ∈ A is required if for
every tree T and node n ∈ T , the function att : N×{a} → D
is total.

Theorem 3. The containment problem in TP@ over trees
with at least one required attribute is PSpace-complete.

Proof. For the upper bound, we reduce the containment
problem in TP@ with required attributes to the implication
problem in ∃CTL which is known to be in PSpace, [11]. As
the first step, we reduce the containment problem in TP@

to the containment in TP¬ (tree pattern formulas with label
negation) similar to Lemma 2. The additional axiom in
Ax (Figure 2) is 〈↓∗〉(¬p@a=c ∧ ¬p@a 6=c) for every required
a ∈ A and c ∈ Σc. This is to enforce that a is defined
everywhere in the tree. As the second step we translate the
containment in TP¬ to the implication problem in ∃CTL.
We omit further details due to the lack of space.

For proving the lower bound we encode the corridor tiling
problem, which is known to be hard for PSpace [4]. Our
lower bound proof uses the construction from the PSpace-
hardness proof for the containment problem in TP with dis-
junction over a finite alphabet in [13].

The corridor tiling problem is formalized as follows. Let
Til = (D,H, V, b̄, t̄, n) be a tiling system, whereD = {d1, . . . ,
dm} is a finite set of tiles, H,V ⊆ D2 are horizontal and
vertical constraints, n is a natural number in unary notation,
b̄ and t̄ are tuples over D of length n. Given such a tiling
system, the goal is to construct a tiling of the corridor of
width n using the tiles from D so that the constraints H
and V are satisfied. Moreover, the bottom and the top row
must be tiled by b̄ and t̄ respectively.

Let a ∈ A be a required attribute. Now we construct
two TP@

=,6= expressions ϕ and ψ such that ϕ 6⊆ ψ over trees
with a required attribute a iff there exists a tiling for Til.
To this purpose, we use the string representation of a tiling.
Each row of the considered tiling is represented by the tiles
it consists of. If the tiling of a corridor of width n has k
rows, it is represented by its rows separated by the special
symbol]. Thus, a tiling is a word of the form u1]u2] · · ·]uk,
where each ui is the word of length n corresponding to the
i-th row in the tiling. In particular u1 = b̄ and uk = t̄.

For the sake of readability, we use the following abbrevia-
tion. Expressions ϕ1/ϕ2 and ϕ1//ϕ2 denote ϕ1 ∧ 〈↓〉ϕ2 and
ϕ1 ∧ 〈↓+〉ϕ2 respectively. Furthermore, ϕ1/

1ϕ2/
2 . . . /l−1ϕl,

where /i ∈ {/, //}must be read as ϕ1/
1(ϕ2/

2(. . . /l−1ϕl) . . .)).
We also say that, for expression r, ri denotes r/ . . . /r with i
occurrences of r. We then define the formulas over attributes
{a} and attribute domain containing D ∪ {]}.
• t̄ = @a = t1/@a = t2/ . . . /@a = tn/@a = #,
• b̄ = @a = b1/ . . . /@a = bn/@a = #.

Let then define ϕ′ := b̄//t̄. Intuitively, this expression en-
forces a tiling to start with a path starting with b̄ and finish-
ing with t̄. Now the formula ψ′ defines all incorrect tilings
and additional constraints. It is the disjunction of the fol-
lowing TP@,∨

=, 6= formulas.

•
∨n−1

i=0 b̄//@a =]/>i/@a =] a row is too short,
• b̄//(@a 6=])n+1 a row is too long,
•

∨
d∈D b̄//(@a = d ∧ @a =]), a tile and the delimiter

occur at the same time,
•

∨
di,dj∈D, i 6=j b̄//(@a = di ∧ @a = dj), there are two

tiles on a position,
• b̄//(@a 6= d1 ∧ . . . ∧ @a 6= dm ∧ @a 6=]), neither the

delimiter or a tile on a position,

•
∨

(d1,d2)6∈H b̄//@a = d1/@a = d2, a horizontal con-
straint is violated,
•

∨
(d1,d2)6∈V b1//@a = d1/>n/@a = d2, a vertical con-

straint is violated.
We then apply Proposition 2 to remove the outermost dis-

junction in ψ′ to obtain the equivalent containment problem
ϕ ⊆ ψ in TP@

=,6=.
However, if we restrict attributes to be required at nodes
labeled with a certain symbol, then the containment is still
in coNP. Let p ∈ Σ be a label and a ∈ A an attribute
name. We say that a is required at element p if att(n, a) is
defined whenever p ∈ ρ(n) for every tree T and node n ∈ T .

Proposition 5. The containment problem in TP@ with
required attributes at elements is in coNP.

Proof. As before, we can prove a variant of Lemma 2.

In this case we take ϕ′ := ϕ̃ and ψ′ as the disjunction of ψ̃,
Ax (from Figure 2) and 〈↓∗〉(p∧¬p@a=c∧¬p@a 6=c) for every
c ∈ Σc and a ∈ Σa required at element p ∈ Σp. The axiom
enforces the requirement that every node with p-label must
have a value for a-attribute.

4. TRACTABLE FRAGMENTS
In this section we consider fragments of tree patterns with

attributes value comparisons where the containment prob-
lem remains in PTime. It is known that containment in
TP↓,> and TP↓,↓

+

is decidable in PTime, [2, 12].
Proposition 6. Let TPX be any fragment whose con-

tainment problem over multiple-labeled trees is in PTime.
Then the containment problem in TP@,X

= over multi-labeled
trees with attributes is also in PTime.

Proof. Let ϕ and ψ be formulas in TP@,X
= .

Our algorithm first checks (in PTime) if ϕ is consistent,
i.e. if it contains both @a = c and @a 6= c or both @a = c
and @a = d in the label of a node in t(ϕ) for some a ∈
A, c, d ∈ D. If ϕ is inconsistent, we output ϕ ⊆ ψ. Other-
wise, we proceed as in the proof of Lemma 2 by reduction
to a containment of attribute-free formulas using the trans-

lation (̃·) and the formula (Label) only.

The rewriting technique from the last proof can also be ap-
plied on TP fragments with = and 6= but then it yields only

a sound algorithm. For TP↓,↓
+

=,6= , this algorithm, assump-
ing PTime 6= NP, must be incomplete by Proposition 3.

For TP↓,>=, 6= and TP↓
+,>

=, 6= it is open whether this algorithm is
complete.

Proposition 7. Let TP@,X
=, 6= be a tree pattern fragment,

and TPX the corresponding fragment without attribute-value
comparisons. For consistent ϕ and ψ, it holds that ϕ̃ ⊆
ψ̃ implies ϕ ⊆ ψ.

Proof. Let T = (N,E, r, l, att) be a tree such that T |= ϕ
and T 6|= ψ. We then define a tree T ′ = (N,E, r, ρ), where
the labeling function ρ is defined as follows.

ρ(n) = {l(n)} ∪ {p@a=c | att(n, a) = c} ∪
∪ {p@a 6=c1 | c1 ∈ Σc, att(n, a) 6= c1}.

We claim that T ′ |= ϕ̃ and T ′ |= ψ̃.

5. CONCLUSION
We showed that optional attribute value comparisons us-

ing all XPath operators do not increase the complexity of
the containment problem when added to tree patterns with
child, descendant and wildcard. For the PTime TP fragment
with child and descendant, we showed that adding equality

and inequality comparisons causes an increase of complex-
ity to coNP. For the other PTime fragments studied in
[2, 12], (i.e., wildcard and one of child and descendant), the
upper bound is still open. For these fragments, we pre-
sented a PTime algorithm which is complete for input with
only equality comparisons, but only known to be sound for
equality and inequality comparisons.

The containment problem for TP with global comparisons
studied in [1] was shown to be ΠP

2 -hard already with only
equality and inequality, and in coNP with only equality.
The exact complexity with just inequality comparisons re-
mains open.
Acknowledgements. This research was supported by the
Netherlands Organization for Scientific Research (NWO) un-
der project number 612.001.012 (DEX).

6. REFERENCES
[1] F. N. Afrati, S. Cohen, and G. M. Kuper. On the

complexity of tree pattern containment with
arithmetic comparisons. Inf. Process. Lett.,
111(15):754–760, 2011.

[2] S. Amer-Yahia, S. Cho, L. Lakshmanan, and
D. Srivastava. Tree pattern query minimization. The
VLDB Journal, 11:315–331, 2002.

[3] M. Benedikt, W. Fan, and F. Geerts. XPath
satisfiability in the presence of DTDs. J. ACM, 55(2),
2008.

[4] B. S. Chlebus. Domino-tiling games. J. Comput. Syst.
Sci., 32(3):374–392, 1986.

[5] C. David. Complexity of data tree patterns over XML
documents. In E. Ochmanski and J. Tyszkiewicz,
editors, MFCS, volume 5162 of Lecture Notes in
Computer Science, pages 278–289. Springer, 2008.

[6] C. David, A. Gheerbrant, L. Libkin, and W. Martens.
Containment of pattern-based queries over data trees.
In ICDT, 2013.

[7] A. Deutsch and V. Tannen. Containment and integrity
constraints for XPath. In M. Lenzerini, D. Nardi,
W. Nutt, and D. Suciu, editors, KRDB, volume 45 of
CEUR Workshop Proceedings. CEUR-WS.org, 2001.

[8] A. Deutsch and V. Tannen. XML queries and
constraints, containment and reformulation. Theor.
Comput. Sci., 336(1):57–87, 2005.

[9] J. Hidders. Satisfiability of XPath expressions. In
G. Lausen and D. Suciu, editors, DBPL, volume 2921
of Lecture Notes in Computer Science, pages 21–36.
Springer, 2003.

[10] B. Kimelfeld and Y. Sagiv. Revisiting redundancy and
minimization in an XPath fragment. In EDBT’08,
pages 61–72.

[11] O. Kupferman and M. Y. Vardi. An
automata-theoretic approach to modular model
checking. ACM Trans. Prog. Lang. Syst.,
22(1):87–128, 2000.

[12] G. Miklau and D. Suciu. Containment and equivalence
for a fragment of XPath. J. ACM, 51(1):2–45, 2004.

[13] F. Neven and T. Schwentick. On the complexity of
XPath containment in the presence of disjunction,
DTDs, and variables. Logical Methods in Computer
Science, 2(3), 2006.

[14] P. T. Wood. Containment for XPath fragments under
DTD constraints. In ICDT 2003, pages 297–311.

	Introduction
	Related work

	Preliminaries
	Containment for Tree Patterns with attribute value comparisons
	Attribute value comparisons over dense unbounded order
	Lower bound

	Restricting the domain of attribute values
	Required attributes

	Tractable fragments
	Conclusion
	References

